1 0 0 7 0 1 7	0				
COLLEXT	L.	r	e	X	τ.

Proposed approach 0 0000 000000

Building invariance properties for dictionaries of SAR image patches

Sonia Tabti¹, Charles-Alban Deledalle², Loïc Denis³, Florence Tupin¹

¹Institut Mines-Télécom, Télécom ParisTech CNRS-LTCI, France
² IMB, CNRS-Univ. Bordeaux, France
³ Laboratoire Hubert Curien, CNRS-Univ. Saint-Etienne, France

July 18, 2014

Dictionaries of patches 0 Proposed approach 0 0000 000000 Conclusions

How to represent information in SAR images?

Different levels of representation

- Pixels.
- Local descriptors.
- Patches.

<u> </u>		
LO	nτ	ext

Our motivations

- ► Elaborate patch-based dictionaries approaches for SAR images.
- Adapt to diversity of SAR data content.
- Provide compact dictionaries.
 - \rightarrow Include invariance properties:
 - Shift-invariance.
 - Affine radiometric transform invariance.

Context	Dictionaries of patches 0 0	Proposed approach o oooo oooooo	Conclusions

Outline

Context

Dictionaries of patches

Main principle of sparse representations Some types of patch-based dictionaries

Invariance properties in patch-based dictionaries for SAR images

Optimal sparsity degree for 1-look SAR images 1-sparse image approximation method with invariance properties Proposed dictionary learning procedure

Conclusions and perspectives

- ► Signal ≃ a linear combination of a few number of dictionary elements (the **atoms**).
- > 1st problem: Learn a dictionary of patches.
- > 2nd problem: Find the best coefficients (sparse coding).

An image

🎆 = Coeff1 🎆 + Coeff2 🎆

An illustration of the sparse coding principle (sparsity degree=2)

Context	Dictionaries of patches	Proposed approach	Conclusions
	•	0 0000 000000	
Some types of pa	atch-based dictionaries		

- **Fixed**, eg: wavelets, Discrete Cosine Transform (DCT).
- Adaptive

eg: Principal Component Analysis (PCA), K-SVD [Aharon et al., 2006].

 Shift invariant eg: MoTIF (Matching of Time Invariant Features) [P. Jost and Gribonval, 2006], Epitomes.

¹Image courtesy: Epitomic analysis of appearance and shape, N. Jojic and al.

6/20

IGARSS 2014

-			
(0	n	'YT	
~~			

Proposed approach 0 0000 000000

Outline

Context

Dictionaries of patches

Main principle of sparse representations Some types of patch-based dictionaries

Invariance properties in patch-based dictionaries for SAR images

Optimal sparsity degree for 1-look SAR images

1-sparse image approximation method with invariance properties Proposed dictionary learning procedure

Conclusions and perspectives

Optimal sparsity degree for 1-look SAR images

Numerical experiment:

- ► A K-SVD dictionary learned on the log of a 100-looks SAR image (256 atoms of width 11 × 11)
- Sparse-coding algorithm: OMP (Orthogonal Matching Pursuit)
- Logarithm of patches corrupted with 1-look gamma noise (speckle) extracted from a SAR image.
- Criterion: MSE (Mean Square error) computed over 100 noisy realizations.

MSE histograms with different sparsity degrees.

Dictionaries of patches 0 Proposed approach 0 •000 00000 Conclusions

1-sparse image approximation method with invariance properties

Outline

Context

Dictionaries of patches

Main principle of sparse representations Some types of patch-based dictionaries

Invariance properties in patch-based dictionaries for SAR images Optimal sparsity degree for 1-look SAR images

1-sparse image approximation method with invariance properties Proposed dictionary learning procedure

Conclusions and perspectives

Dictionaries of patches 0 Proposed approach

Conclusions

1-sparse image approximation method with invariance properties

Introducing radiometric invariance ²

The square difference, $SSD(a, p) = \|p - a\|^2$, is not robust against radiometric changes. Invariant critera should answer positively to the question:

Enforcing affine radiometric invariance into the $\ {\rm SSD}$ leads to:

$$SSD^{CI}(\boldsymbol{a},\boldsymbol{p}) = \begin{cases} (1 - \mathcal{C}(\boldsymbol{p},\boldsymbol{a})^2) \|\boldsymbol{p} - \bar{\boldsymbol{p}}\|^2 & \text{if } \boldsymbol{a} \neq \bar{\boldsymbol{a}} \text{ and } \boldsymbol{p} \neq \bar{\boldsymbol{p}} \\ \|\boldsymbol{p} - \bar{\boldsymbol{p}}\|^2 & \text{else} \end{cases}$$

with $C(\mathbf{p}, \mathbf{a}) = \frac{\langle \mathbf{p} - \bar{\mathbf{p}}, \mathbf{a} - \bar{\mathbf{a}} \rangle}{||\mathbf{p} - \bar{\mathbf{p}}||_2 ||\mathbf{a} - \bar{\mathbf{a}}||_2}$ the normalized correlation,

- **p**, **a**: $\sqrt{m} \times \sqrt{m}$: noisy patches and atom resp.
- **\bar{a}** and \bar{p} : patches with constant values equal to the means of a and p resp.

²Template matching with noisy patches: a contrast-invariant GLR test, EUSIPCO 2013 Charles-Alban Deledalle, Loïc Denis, Florence Tupin

IGARSS 2014

10/20

Dictionaries of patches 0 1-sparse image approximation method with invariance properties

Approximation-error of all the patches with a particular atom

Measuring the quality of an atom *a* with respect to an image *y* requires evaluating $SSD^{Cl}(a, p)$ for all patches $p \to \text{time consuming}$

Proposed extension: fast computation of the map of the criterion between a given atom and all the patches of a **whole image** y.

Contrast-invariant and 1-sparse approximation error map of y by a

$$SSD_{map}^{CI}(\boldsymbol{a}, \boldsymbol{y}) = \begin{cases} \boldsymbol{y}^2 \star \iota - m(\boldsymbol{y} \star \iota/m)^2 - \frac{(\boldsymbol{y} \star (\boldsymbol{a} - \bar{\boldsymbol{a}}))^2}{\|\boldsymbol{a} - \bar{\boldsymbol{a}}\|^2} & \text{if } \boldsymbol{a} \neq \bar{\boldsymbol{a}} \\ \boldsymbol{y}^2 \star \iota - m(\boldsymbol{y} \star \iota/m)^2 & \text{else} \end{cases}$$

where ι is the support of a patch (an $\sqrt{m} \times \sqrt{m}$ window), \star the 2D-discrete convolution, and \cdot^2 the element-wise square function.

 \Rightarrow Fast computation in the Fourier domain with $O(N \log N)$ operations where N is the size of the image.

Dictionaries of patches \circ

Proposed approach

Conclusions

1-sparse image approximation method with invariance properties

Including the shift-invariance

Key idea: Selecting the neighboring patch around a pixel with the smallest error boils down to applying an erosion to SSD_{map}^{CI} (image tiling).

where $erode(\cdot, \iota)$ is the erosion operator with structural element ι .

Dictionaries of patches 0 Proposed approach 0 0000 •00000 Conclusions

Proposed dictionary learning procedure

Outline

Context

Dictionaries of patches

Main principle of sparse representations Some types of patch-based dictionaries

Invariance properties in patch-based dictionaries for SAR images Optimal sparsity degree for 1-look SAR images

1-sparse image approximation method with invariance properties

Proposed dictionary learning procedure

Conclusions and perspectives

Dictionaries of patches

Proposed approach 0 0000 0 0000 Conclusions

Proposed dictionary learning procedure

• $C = \{c_t\}$: set of candidate patches to be atoms or not

(e.g., extracted from 100-looks SAR images).

y is the noisy image to approximate.

▶ Goal: learn a dictionary D with a fixed (low) number of atoms from C which approximate the content of y with respect to the noise level.

• Method: replace iteratively one atom by a candidate from $C = \{c_t\}$.

▶ Mean: minimize SSD^{CI+SI} at each step to improve the dictionary.

Dictionaries of patches

Proposed approach 0 0000 0000 Conclusions

Proposed dictionary learning procedure

Computation of the approximation error map

Approximation error map of y with a dictionary \mathcal{D} at pixel i $SSD_{map}^{CI+SI}(\mathcal{D}, y)_i = \min_k SSD_{map}^{CI+SI}(a_k, y)_i$

Dictionaries of patches 0 Proposed approach 0 0000 000000 Conclusions

Proposed dictionary learning procedure

Dictionary update: is c_t replacing a_k ?

Gain map at pixel *i* if candidate c_t replaces an atom a_k $SSD_{map}^{CI+SI}(\mathcal{D}, \mathbf{y})_i - SSD_{map}^{CI+SI}(\mathcal{D} \cup \{c_t\} \setminus \{a_k\}, \mathbf{y})_i$

Condition to add a candidate patch c_t , **to the dictionary:** find an atom a_k such that the average gain is positive (ie the average approximation error is reduced).

Dictionaries of patches

Proposed approach

Conclusions

Proposed dictionary learning procedure

Results

Noisy image y

Energy decay wrt atoms updated

K-SVD dictionary

Our dictionary

Dictionaries of patches

Proposed	approach
0	
0000	
000000	

Conclusions

Proposed dictionary learning procedure

Results: Illustration of the dictionnary

Which atom is used to approximate patches from the noisy image?

 \triangleright all features

Dictionaries of patches

Proposed	approach
0	
0000	
000000	

Conclusions

Proposed dictionary learning procedure

Results: Illustration of the dictionnary

Which atom is used to approximate patches from the noisy image?

 \triangleright vertical edges

Dictionaries of patches

Proposed	approach
0	
0000	
000000	

Conclusions

Proposed dictionary learning procedure

Results: Illustration of the dictionnary

Which atom is used to approximate patches from the noisy image?

 \triangleright horizontal edges

Dictionaries of patches

Proposed	approach
0	
0000	
000000	

Conclusions

Proposed dictionary learning procedure

Results: Illustration of the dictionnary

Which atom is used to approximate patches from the noisy image?

▷ corners

Dictionaries of patches

Proposed	approach
0	
0000	
000000	

Conclusions

Proposed dictionary learning procedure

Results: Illustration of the dictionnary

Which atom is used to approximate patches from the noisy image?

 \triangleright low-radiometry linear features

Dictionaries of patches

Proposed	approach
0	
0000	
000000	

Conclusions

Proposed dictionary learning procedure

Results: Illustration of the dictionnary

Which atom is used to approximate patches from the noisy image?

b high-radiometry linear features

0			
	n	ΞX.	С

Contributions:

- A 1-sparse similarity criterion with shift and affine radiometric transform invariance.
 - Can be adapted to compare the performances of different dictionaries.
- A dictionary learning algorithm with an updating procedure based on this criterion.
 - Complexity: $O(TN \log N)$ with T the number of candidates.
 - Provides a compact summary of an image (no redundant atoms).
 - Is a good way to initialize a dictionary based method.

Perspectives:

- Replacement of more than one atom by iteration.
- Applications to denoising and clustering.

Co	nt	ext	

Thank you for your attention. Any questions?

sonia.tabti@telecom-paristech.fr

nt	0	/t
		< ι.

References I

Aharon, M., Elad, M., and Bruckstein, A. (2006).

The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation.

IEEE Trans. on Signal Processing, 54(11):4311-4322.

P. Jost, P. Vandergheynst, S. L. and Gribonval, R. (2006).

MoTIF: an efficient algorithm for learning translation invariant dictionaries. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006, volume 5, pages V–V. IEEE.

0	nte	v+
CU	IILC	:~L

Proposed approach 0 0000 000000 Conclusions

Computation of the gain: different cases

Trick to make it fast: keep track of the two atoms with the best approximation errors in \mathcal{D} . Their indices: k_i^{1st}, k_i^{2nd} resp.

▶ k ≠ k_i^{1st}: Either c_t improves or does not affect the error at pixel i and the gain is:

$$\max(\operatorname{SSD}_{\operatorname{map}}^{\operatorname{CI+SI}}(\mathcal{D}, \boldsymbol{y})_{i} - \operatorname{SSD}_{\operatorname{map}}^{\operatorname{CI+SI}}(\boldsymbol{c}_{t}, \boldsymbol{y})_{i}, 0)$$
(1)

• $k = k_i^{1st}$:

• c_t is better than $a_{k_i^{ist}}$ and $a_{k_i^{2nd}}$ so the gain is:

$$SSD_{map}^{CI+SI}(\mathcal{D}, \boldsymbol{y})_{i} - SSD_{map}^{CI+SI}(\boldsymbol{c}_{t}, \boldsymbol{y})_{i}$$
(2)

• c_t is worse than $a_{k_t^{2nd}}$ and the gain is:

$$\mathrm{SSD}_{\mathrm{map}}^{\mathrm{CI+SI}}(\mathcal{D}, \boldsymbol{y})_{i} - \mathrm{SSD}_{\mathrm{map}}^{\mathrm{CI+SI}}(\boldsymbol{a}_{k_{i}^{2nd}}, \boldsymbol{y})_{i}$$
(3)