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How to represent information in SAR images?

Different levels of representation

> Pixels.
> Local descriptors.
> Patches.
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Our motivations

» Elaborate patch-based dictionaries approaches for SAR images.
» Adapt to diversity of SAR data content.

» Provide compact dictionaries.

— Include invariance properties:
» Shift-invariance
» Affine radiometric transform invariance.

compact dictionary

not shift invariant dictionary

An image
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Main principle of sparse representations

» Signal >~ a linear combination of a few number of dictionary
elements (the atoms).

> 1st problem: Learn a dictionary of patches.

> 2nd problem: Find the best coefficients (sparse coding).
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An image A trained dictionary

Wl = coeff1 + Coeff2 [[]]

An illustration of the sparse coding principle (sparsity degree=2)
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Some types of patch-based dictionaries

> Fixed, eg: wavelets, Discrete Cosine Transform (DCT).

> Adaptive
eg: Principal Component Analysis (PCA),
K-SVD [Aharon et al., 2006].

> Shift invariant
eg: MoTIF (Matching of Time Invariant Features)
[P. Jost and Gribonval, 2006],
Epitomes.

128 x 128 image 50 x 50 epitome *

Conclusions

'Image courtesy: Epitomic analysis of appearance and shape, N. Jojic and al.
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Optimal sparsity degree for 1-look SAR images
Numerical experiment:

» A K-SVD dictionary learned on the log of a 100-looks SAR image
(256 atoms of width 11 x 11)

> Sparse-coding algorithm: OMP (Orthogonal Matching Pursuit)

> Logarithm of patches corrupted with 1-look gamma noise (speckle)
extracted from a SAR image.

» Criterion: MSE (Mean Square error) computed over 100 noisy
realizations.

Number of estimated patches

035 04 045 05 055 06
Mean square error

MSE histograms with different sparsity degrees.
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1-sparse image approximation method with invariance properties
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1-sparse image approximation method with invariance properties

Introducing radiometric invariance 2

The square difference, SSD(a, p) = ||p — a||?, is not robust against radiometric
changes. Invariant critera should answer positively to the question:

Does z match ! ?
doke .ok

] @a+p, wa+p, aa+p,

Enforcing affine radiometric invariance into the SSD leads to:

SSDCI(a7p):{ (1*C_(I;,a)2)|\P*ﬁH2 if aZa and p#p
e — Bl else

. <p_l_)7a_5>
th C 5 = = =
with C(p.2) = (L FILa =3l

> p, a: \/m x /m: noisy patches and atom resp.
> aand p: patches with constant values equal to the means of a and p resp.

the normalized correlation,

2Template matching with noisy patches: a contrast-invariant GLR test, EUSIPCO 2013
10/20 Charles-Alban Deledalle, Loic Denis, Florence Tupin
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1-sparse image approximation method with invariance properties

Approximation-error of all the patches with a particular atom

Measuring the quality of an atom a with respect to an image y requires
evaluating SSD¢(a, p) for all patches p — time consuming

Proposed extension: fast computation of the map of the criterion between a
given atom and all the patches of a whole image y.

Contrast-invariant and 1-sparse approximation error map of y by a

(yx(a—2a) -
W if a ;é a
y2 %1 —m(y xt/m)>? else

2 2
SSDYL (a,y) = ¢ ¥ *eT M e/my =

where ¢ is the support of a patch (an v/m x /m window), * the
2D-discrete convolution, and -2 the element-wise square function.

= Fast computation in the Fourier domain with O(N log ) operations
where N is the size of the image.
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1-sparse image approximation method with invariance properties

Including the shift-invariance

Key idea: Selecting the neighboring patch around a pixel with the smallest
error boils down to applying an erosion to SSDgap (image tiling).

‘_\ The patch representing this

pixel with the smallest error

SSDSmp with shift-invariance

SSDSLS!(a, y) = erode( SSDL,(a, ¥), ¢)

where erode(-, t) is the erosion operator with structural element ¢.

a3V
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Proposed dictionary learning procedure

> C = {c:}: set of candidate patches to be atoms or not
(e.g., extracted from 100-looks SAR images).

ooo- 0O
c, .. c,

v

> Goal: learn a dictionary D with a fixed (low) number of atoms from C
which approximate the content of y with respect to the noise level.

ooo. d
a a

> Method: replace iteratively one atom by a candidate from C = {c:}.

ooo.. a
aic a

» Mean: minimize SSD,(;E};SI at each step to improve the dictionary.
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Proposed dictionary learning procedure

Conclusions
Computation of the approximation error map

crsi
$SD (a,.y)
map

Ciss1
ssD (a,.y) —
map
min for each s

. CI:S1
pixel SSD_(D.y)
oy

Approximation error map of y with a dictionary D at pixel i

SSDfnap (D, ¥)i = min SSDIL (ax, y)s

map
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Dictionary update: is c; replacing ay?

Ct

Gain map at pixel i if candidate c; replaces an atom aj

SSDSLS(D, y)i — SSDSLET (D U {ee} \ {ak}, y)i

Condition to add a candidate patch c;, to the dictionary: find an atom a, such
that the average gain is positive (ie the average approximation error is reduced).
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Results

K-SVD dictionary

Our dictionary
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Proposed dictionary learning procedure

Results: lllustration of the dictionnary

Which atom is used to
approximate patches
from the noisy image?

> all features

18/20
IGARSS 2014



Context Dictionaries of patches Proposed approach Conclusions

[e] [e]
[e] 0000
00000e

Proposed dictionary learning procedure

Results: lllustration of the dictionnary

Which atom is used to
approximate patches
from the noisy image?

> vertical edges

AT
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Proposed dictionary learning procedure

Results: lllustration of the dictionnary

Which atom is used to
approximate patches
from the noisy image?

> horizontal edges ;
o ¥ ;

Bl DL

An

.
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Proposed dictionary learning procedure

Results: lllustration of the dictionnary

Which atom is used to
approximate patches
from the noisy image?

> corners

¥

LR

S I
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Proposed dictionary learning procedure

Results: lllustration of the dictionnary

il 4 S I Bl

Which atom is used to
approximate patches
from the noisy image?

> low-radiometry linear

features H.I e

AT

.
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Proposed dictionary learning procedure

Results: lllustration of the dictionnary

'R

Which atom is used to
approximate patches
from the noisy image?

s
—

> high-radiometry linear ) 'WE ’
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Contributions:

»> A 1-sparse similarity criterion with shift and affine radiometric transform
invariance.

» Can be adapted to compare the performances of different
dictionaries.

> A dictionary learning algorithm with an updating procedure based on this
criterion.
» Complexity: O(TNlog N) with T the number of candidates.
» Provides a compact summary of an image (no redundant
atoms).
» Is a good way to initialize a dictionary based method.
Perspectives:
> Replacement of more than one atom by iteration.

> Applications to denoising and clustering.
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Thank you for your attention.
Any questions?

sonia.tabtiOtelecom-paristech.fr
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Conclusions

Computation of the gain: different cases

Trick to make it fast: keep track of the two atoms with the best approximation
errors in D. Their indices: kl.lst7 k’.Z”d resp.

> k = kit: Either ¢, improves or does not affect the error at pixel i
and the gain is:

max( SSDS};;SI( y)i — SSDECSI (¢, y);,0) (1)J

map

> k= kist:
> C; is better than a1 and a,2.4 so the gain is:

SSDik” (D, y)i — SSDL (ee. y): (2) |

map

> C: is worse than a4 and the gain is:

SSDSLS(D, y); — SSDSL @yena. ¥); ® |

map
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