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Some challenges in SAR (Synthetic Aperture Radar) imagery

A SAR image and the optical corresponding image

I Type of noise: multiplicative (gamma distribution for intensity images).
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Objectives of this work

Patches in a SAR image

I Elaborate models to learn the distribution of patches extracted from SAR

images.

I Introduce shift-invariance properties in these models.

I Apply them to SAR image restoration.
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Introduction to GMM

A patch x i of size 8× 8 from a natural image x is well modeled by a GMM:

p(x i ) =
K∑

k=1

wknk exp{− 1
2
(x i − µk)

tΣ−1
k

(x i − µk)} =
K∑

k=1

N (x i ; Mk) (1)

where:

I µk and Σk are the mean and the covariance matrix of the k-th modelMk resp.;

I wk the k-th mixweight;

I nk = det(2πΣk)
−1/2 is a normalization constant.
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Introduction to GMM

How do GMM approaches work for a denoising task?

Reconstruct an image such that each of its patches is:

I close to its noisy version

I most relevant under a GMM prior.

p(x i ) ≈ max
k
N (x i ; Mk) = Nki

(x i ; Mk) (2)

Some algorithms based on this assumption:

I The PLE (Piecewise Linear Estimator) [Yu et al., 2012]:

I The EPLL (Expected Patch Log Likelihood) [Zoran and Weiss, 2011].

6/22

Sonia Tabti Modeling the distribution of patches with shift invariance: an application to SAR image restoration



Context GMM approaches Proposed method Conclusions

Main principle of the EPLL

MAP estimate of the image

min
x

λ

2
||x − y ||22 − log

N∏
i=1

Nki (x i ; Mk) (3)

With:

I y the corrupted image and x the reconstruction

I λ > 0 a parameter

I N the number of patches
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Main principle of the EPLL

min
x

λ

2
||x − y ||22 − log

N∏
i=1

Nki (x i ; Mk) (3)

Can be solved by the EPLL with the half quadratic splitting

method:

min
x ,z i

λ

2
||x − y ||22 +

∑
i

β

2
||x i − z i ||22 − log Nki (z i ; Mk) (4)

I Each z i is an auxiliary variable associated to x i .
I β tunes the di�erence between x i and z i .
I With β �xed, (4) can be solved alternatively for x and z i and

boil down to applying a Wiener �lter.
I Their prior: a GMM (200 components) learned over 106

patches extracted from natural images.8/22
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A study on the information encoded by covariance matrices

Is the EPLL shift-invariant?

One gaussian should explain as well all shifted versions of a same pattern inside a patch.

Edge image

Patches generated by the

best gaussian
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A study on the information encoded by covariance matrices

Is the EPLL shift-invariant?

One gaussian should explain as well all shifted versions of a same pattern inside a patch.

Edge image

Patches generated by the

best gaussian

Many shifts are encoded by one gaussian ... But not all of them!
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A study on the information encoded by covariance matrices

What Gaussian Models (GM) are actually used?

Original Noisy, σ = 20 Denoised with 200 GM map Denoised with 2

200 GM best GM

Zooms:

200 GM map Denoised with 200 GM With 2 GM
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Introducing the shift-invariance

The proposed prior ∏
i

max
j∈V(i)

Nkj (x j ; Mk) (5)

where V(i) denotes the indices of the i-th patch neighborhood.

The optimization problem adapted to shift-invariance

min
x

λ

2
‖x − y‖2 +

∑
i

min
j∈V(i),z i

{
β

2
‖x j − z i‖2 − log Nkj (z j ; Mk)

}
(6)
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Introducing the shift-invariance

Results on a synthetic image

(a) Original (b) (c)

(d) Noisy (e) (f)
Obtained Obtained

with 10 GM with 2 GM

I (b-c) Denoised without shift-invariance

I (e-f) Denoised with shift-invariance
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Adaptation to despeckling

I Apply a log-transformation to the noisy image.
I The square di�erence is no longer the best choice as a data

term

→ Fisher-Tippett data-�delity term.

Fisher-Tippett density with di�erent parameters.
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Adaptation to despeckling

The whole optimization problem

min
x

λ

N∑
i=1

(
eyi−xi + xi − yi

)
+ min

j∈V(i),z i

{
β

2
‖x j −z i‖2− log Nkj

(z j ; Mk)

}
(7)

where xi is the i-th pixel of x .

I Optimization along x performed with a Newton algorithm.

I Same optimization scheme as previously along z .
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Adaptation to despeckling

Results on SAR data

(a) 2-looks images (b) log-EPLL (c) FT-EPLL (d) Shift Invariant

of Toulouse FT-EPLL
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Adaptation to despeckling

Zooms of the results

log-EPLL Proposed method

Fisher-Tippett-EPLL Proposed method
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Adaptation to despeckling

Comparisons with state of the art despeckling methods

(a) 2-looks images (b) NL-SAR �lter 1 (c) BM3D �lter (d) Our approach
on the log image 2

1- C.-A. Deledalle et al., NL-SAR: a uni�ed Non-Local framework for resolution-preserving Pol In SAR denoising,
2013

2- M. Makitalo et al., Denoising of single-look SAR images based on variance stabilization and nonlocal �lters, 2010
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Contributions

I Study on the information encoded by Gaussian models in a

simple case.

I Introduction of the shift-invariance property in the EPLL

algorithm.

I Adaptation to SAR image restoration.

Perspectives

I Learn a GMM prior using patches extracted from

nearly-noiseless SAR images.

I Is it possible to include shift-invariance in this learning?

I Extend the EPLL to SAR image classi�cation.
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Thank you for your attention.

Any questions?

sonia.tabti@telecom-paristech.fr
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Heavy-tailed gamma distribution

pG(yj |xj) =
LLyL−1j

xLj Γ(L)
exp

(
−L

yj

xj

)
(8)

where L is the number of looks and Γ is the gamma function. We

have: Var(yj) = E(yj)
2/L = x2j /L.

Gamma distribution with di�erent values of L



Context GMM approaches Proposed method Conclusions

Optimization with the Fisher-Tippett data term

We can write: ∑
i

‖Pj?
i
x − z i‖2 =

∑
i

ci (xi − z̄i )
2

where j?i is the index of the best-representing patch covering the

pixel i .

Hence,

N∑
i=1

[
λ(eyi−xi + xi − yi ) +

β

2
ci (xi − z̄i )

2

]
(9)

Iterative Newton-scheme for xi :

x
(t+1)
i = x

(t)
i −

λ(1− eyi−x
(t)
i ) + βci (x

(t)
i − z̄i ))

λeyi−x
(t)
i + βci

(10)



Context GMM approaches Proposed method Conclusions

Denoising the square image with the best Zoran and Weiss
Gaussian model
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