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Some challenges in SAR (Synthetic Aperture Radar) imagery

Backscattering targets

Dark road

Backscattering
ad

Strong noise:

Speckle
:

A SAR image and the optical corresponding image
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Different priors
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Markov Random Fields.
Non local.
Gaussian Mixture Models (GMM).
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Introduction to GMM

i =37 o 1 0

A patch x; from a natural image x is well modeled by a GMM:

K K
p(xi) = D wienkexp{—3(xi — i) B (xi — i)} = D N(xii a)

k=1 k=1

where:
> py and X are the mean and the covariance matrix of the k-th model M resp.;
> wy the k-th mixweight;
> nj = det(2rX,)~1/2 is a normalization constant.
4/13 > aj = {py, Tk, wi } is the k-th Gaussian Model.
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Introduction to GMM
How do GMM approaches work in practice?

Reconstruct an image such that each of its patches is:
» close to its noisy version
» most relevant under a GMM prior.

\ S i p(x;) ~ max N (x;; ag)

Conclusions

Find the best GM for each patch

One of the algorithms based on this assumption:

> The EPLL (Expected Patch Log Likelihood) [Zoran and Weiss, 2011].
» The authors learnt a zero-mean 200 components GMM on a huge basis of

centered 8 x 8 patches extracted from natural images.
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Previous work

» Previous work: Adapation of the EPLL to SAR image
restauration [Tabti et al., 2014].

» By product: Map of the best Gaussian Model (GM)
representing each pixel of the denoised image.

Use these maps to develop a supervised classification method.
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Some single SAR image classification methods

» Methods based on machine learning techniques:
» SVM [Lardeux et al., 2009]
» Random forests [Yang et al., 2009]

» Methods modeling texture and the amplitude of the SAR

image.
For the texture For the amplitude
» Gray Level Co occurence » Nakagami distribution
Matrices [Voisin et al., 2010] [Kayabol and Zerubia, 2013]
» Auto Regressive model » Fisher distribution
[Kayabol and Zerubia, 2013] [Voisin et al., 2010]

— need for regularization, eg: Markovian models.
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Some single SAR image classification methods

Outline

Context
Introduction to GMM
Previous work on a patch-based SAR image restauration method
Some single SAR image classification methods

Proposed classification framework
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Training phase

Learning the features

~»
~»
Noisy Denoised GM maps

3
— b lu

First feature:
Manually labeled Occurence frequency of each
GM conditionally to the label
> Training set: 8 amplitude-calibrated TerraSAR-X images (sizes between

1000 x 1000 and 2048 x 2048).

> The labels are: Urban zones, high vegetation, homogeneous areas (water and
low vegetation).

» A second feature is obtained the same way: after quantization of the images in
10 levels — occurence frequency of each gray level conditionnaly to the
0/13 label.
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Test phase

* /

Noisy image Denoised GM map
to classify + quantized image

Probability for the i-th pixel to belong to the label £

. . O
logp(a' = ax,v' =vq|L) =log p(ak|L) +log p(rq|L) a pixel

a, occurence Vg occurence
frequency frequency ()
.

> a' is the i-th pixel corresponding GM. |||I L_hl_

» v/ is the i-th pixel corresponding radiometry.
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Noisy image Denoised GM map
to classify + quantized image
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Test phase

Maximizing the overall a posteriori probability

Find the label minimizing: n
.. . . . a pixel
—log ) “p(a Vi) + B (L L)
i inj /‘)\

Potts regularization term

»> where: 5 >0, i ~ j are the indices of neighbor pixels in a |III | I I
eight-connectivity system.

» [ is the i-th pixel label, 6(£i,£j) =1if £1 = £J, 0 otherwise.

> Solutions obtained iteratively obtained by graph-cuts with the o — 3 swap

11/13 strategy [Boykov et al., 2001].
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91.71% 86.71% 75.37%

Legend: Urban, High vegetation, Low vegetation and water, Unlabeled
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Contributions

We proposed:

» A new supervized single amplitude SAR image classification
algorithm.

» A simple framework showing the potential of a GMM-based
feature.

Perspectives

» Enlarge the training basis.

» Use a GMM learnt on SAR images instead of the GMM learnt
by [Zoran and Weiss, 2011].

» Use a more sophisticated learning technique, eg: SVM,...

» Compare our results with state of the art methods.

13/13
Sonia Tabti



Context Proposed classification framework Results Conclusions

e]e} o
[e] (o]e}
(e}

Thank you for your attention.
Any questions?

sonia.tabtiOtelecom-paristech.fr
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Histograms representing the probability of occurence of each Gaussian
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Conclusions

Model for each label. Each histogram varies from one label to another

and this allows the GMM-based feature to discriminate the different

labels.
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