Cor	itext
00	
0	
00	

Patch-based SAR image classification: the potential of modeling the statistical distribution of patches with Gaussian Mixtures

Sonia Tabti¹, Charles-Alban Deledalle², Loïc Denis³, Florence Tupin¹

¹ Institut Mines-Télécom, Télécom ParisTech CNRS-LTCI, France
 ² IMB, CNRS-Univ. Bordeaux, France
 ³ Laboratoire Hubert Curien, CNRS-Univ. Saint-Etienne, France

July 29, 2015

Conte	>
00	
0	
00	

Results

Some challenges in SAR (Synthetic Aperture Radar) imagery

A SAR image and the optical corresponding image

Context	Proposed classification framework	Results	Conclusions
00 0 00	000		

Different priors

- Markov Random Fields.
- Non local.
- Gaussian Mixture Models (GMM).

Context	Proposed classification framework	Results	Conclusions
00 0 00	0 00		

Different priors

- Markov Random Fields.
- Non local.
- Gaussian Mixture Models (GMM).
- ► ..

A patch x_i from a natural image x is well modeled by a GMM:

$$p(\mathbf{x}_i) = \sum_{k=1}^{K} w_k n_k \exp\{-\frac{1}{2}(\mathbf{x}_i - \boldsymbol{\mu}_k)^t \boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_i - \boldsymbol{\mu}_k)\} = \sum_{k=1}^{K} \mathcal{N}(\mathbf{x}_i; \mathbf{a}_k)$$

where:

- \blacktriangleright μ_k and $\mathbf{\Sigma}_k$ are the mean and the covariance matrix of the k-th model \mathcal{M}_k resp.;
- w_k the k-th mixweight;
- $n_k = \det(2\pi \Sigma_k)^{-1/2}$ is a normalization constant.
- ► $\boldsymbol{a}_k = \{ \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, w_k \}$ is the *k*-th Gaussian Model.

Sonia Tabti

4/13

Context	Proposed classification framework	Results	Conclusions
0●	0		
0	00		
00			
Introduction to GI	MM		

How do GMM approaches work in practice?

Reconstruct an image such that each of its patches is:

- close to its noisy version
- most relevant under a GMM prior.

Find the best GM for each patch
$$p(x_i) \approx \max_k \mathcal{N}(x_i; a_k)$$

One of the algorithms based on this assumption:

- The EPLL (Expected Patch Log Likelihood) [Zoran and Weiss, 2011].
- The authors learnt a zero-mean 200 components GMM on a huge basis of centered 8 × 8 patches extracted from natural images.

5/13

Sonia Tabti

Context	Proposed classification framework	Results	Conclusions
00	0		
00			
Previous work			

- Previous work: Adapation of the EPLL to SAR image restauration [Tabti et al., 2014].
- By product: Map of the best Gaussian Model (GM) representing each pixel of the denoised image.

Idea

Use these maps to develop a supervised classification method.

6/13

Sonia Tabti

Context	Proposed classification framework	Results	Conclusions
00	0		
0	00		
●O			
Some single SAR image classification methods			

- Methods based on machine learning techniques:
 - SVM [Lardeux et al., 2009]
 - Random forests [Yang et al., 2009]
- Methods modeling texture and the amplitude of the SAR image.

For the texture

- Gray Level Co occurence Matrices [Voisin et al., 2010]
- Auto Regressive model [Kayabol and Zerubia, 2013]

For the amplitude

- Nakagami distribution [Kayabol and Zerubia, 2013]
- Fisher distribution
 [Voisin et al., 2010]

ightarrow need for regularization, eg: Markovian models.

Context	Proposed classification framework	Results	Conclusions	
00	0			
0	00			
00				
Some single SAR image classification methods				

Outline

Context

Introduction to GMM

Previous work on a patch-based SAR image restauration method Some single SAR image classification methods

Proposed classification framework

Training phase Test phase

Results

Conclusions

Context	Proposed classification framework	Results	Conclusions
00 0 00	• • • • • • • • • • • • • • • • • • • •		
Training phase			

Learning the features

- Training set: 8 amplitude-calibrated TerraSAR-X images (sizes between 1000 × 1000 and 2048 × 2048).
- The labels are: Urban zones, high vegetation, homogeneous areas (water and low vegetation).
- A second feature is obtained the same way: after quantization of the images in 10 levels → occurence frequency of each gray level conditionnaly to the label.

Sonia Tabti

9/13

Context	Proposed classification framework	Results	Conclusions
00 0 00	○ ● ○		
Test phase			

Outline

Context

Introduction to GMM

Previous work on a patch-based SAR image restauration method Some single SAR image classification methods

Proposed classification framework

Training phase Test phase

Results

Conclusions

 \triangleright ν^i is the *i*-th pixel corresponding radiometry.

Solutions obtained iteratively obtained by graph-cuts with the $\alpha - \beta$ swap strategy [Boykov et al., 2001].

Context 00 0 00 Proposed classification framework

Results

Conclusions

Legend: Urban, High vegetation, Low vegetation and water, Unlabeled

Context	Proposed classification framework	Results	Conclusions
00 0 00	0 00		

Contributions

We proposed:

- A new supervized single amplitude SAR image classification algorithm.
- A simple framework showing the potential of a GMM-based feature.

Perspectives

- Enlarge the training basis.
- Use a GMM learnt on SAR images instead of the GMM learnt by [Zoran and Weiss, 2011].
- Use a more sophisticated learning technique, eg: SVM,...
- Compare our results with state of the art methods.

Context	Proposed classification framework 0 00	Results	Conclusions
00			

Thank you for your attention. Any questions?

sonia_tabti@telecom-paristech_fr

Context	Proposed classification framework	Results	Conclusions
00	0		
0	00		
00			

References

From learning models of natural image patches to whole image restoration. ICCV.

Context	Proposed classification framework	Results	Conclusions
00 0 00	0 00		

Histograms representing the probability of occurence of each Gaussian Model for each label. Each histogram varies from one label to another and this allows the GMM-based feature to discriminate the different labels.