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Some challenges in SAR (Synthetic Aperture Radar) imagery

A SAR image and the optical corresponding image
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Di�erent priors

I Markov Random Fields.

I Non local.

I Gaussian Mixture Models (GMM).

I ...
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Introduction to GMM

A patch x i from a natural image x is well modeled by a GMM:

p(x i ) =
K∑

k=1

wknk exp{− 1
2
(x i − µk)

tΣ−1
k

(x i − µk)} =
K∑

k=1

N (x i ; ak)

where:

I µk and Σk are the mean and the covariance matrix of the k-th modelMk resp.;

I wk the k-th mixweight;

I nk = det(2πΣk)
−1/2 is a normalization constant.

I ak = {µk ,Σk ,wk} is the k-th Gaussian Model.4/13
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Introduction to GMM

How do GMM approaches work in practice?

Reconstruct an image such that each of its patches is:

I close to its noisy version

I most relevant under a GMM prior.

Find the best GM for each patch

p(x i ) ≈ max
k
N (x i ; ak)

One of the algorithms based on this assumption:

I The EPLL (Expected Patch Log Likelihood) [Zoran and Weiss, 2011].

I The authors learnt a zero-mean 200 components GMM on a huge basis of

centered 8× 8 patches extracted from natural images.
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Previous work

I Previous work: Adapation of the EPLL to SAR image
restauration [Tabti et al., 2014].

I By product: Map of the best Gaussian Model (GM)
representing each pixel of the denoised image.

Idea

Use these maps to develop a supervised classi�cation method.
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Some single SAR image classi�cation methods

I Methods based on machine learning techniques:
I SVM [Lardeux et al., 2009]
I Random forests [Yang et al., 2009]

I Methods modeling texture and the amplitude of the SAR
image.

For the texture

I Gray Level Co occurence
Matrices [Voisin et al., 2010]

I Auto Regressive model
[Kayabol and Zerubia, 2013]

For the amplitude

I Nakagami distribution
[Kayabol and Zerubia, 2013]

I Fisher distribution
[Voisin et al., 2010]

→ need for regularization, eg: Markovian models.
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Training phase

Learning the features

I Training set: 8 amplitude-calibrated TerraSAR-X images (sizes between

1000× 1000 and 2048× 2048).

I The labels are: Urban zones, high vegetation, homogeneous areas (water and

low vegetation).

I A second feature is obtained the same way: after quantization of the images in

10 levels → occurence frequency of each gray level conditionnaly to the

label.9/13
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Test phase
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Test phase

Probability for the i -th pixel to belong to the label L

log p(ai = ak ,ν
i = νq|L) = log p(ak |L)︸ ︷︷ ︸

ak occurence
frequency

+ log p(νq|L)︸ ︷︷ ︸
νq occurence
frequency

I a
i is the i-th pixel corresponding GM.

I ν i is the i-th pixel corresponding radiometry.
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Test phase

Maximizing the overall a posteriori probability

Find the label minimizing:

− log
∑

i

p(ai ,ν i |Li ) + β
∑
i∼j

δ(Li ,Lj)︸ ︷︷ ︸
Potts regularization term

I where: β > 0, i ∼ j are the indices of neighbor pixels in a
eight-connectivity system.

I Li is the i-th pixel label, δ(Li ,Lj ) = 1 if Li = Lj , 0 otherwise.

I Solutions obtained iteratively obtained by graph-cuts with the α− β swap
strategy [Boykov et al., 2001].
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91.71% 86.71% 75.37%

Legend: Urban, High vegetation, Low vegetation and water, Unlabeled

12/13

Sonia Tabti Patch-based SAR image classi�cation: the potential of modeling the statistical distribution of patches with Gaussian Mixtures



Context Proposed classi�cation framework Results Conclusions

Contributions

We proposed:

I A new supervized single amplitude SAR image classi�cation
algorithm.

I A simple framework showing the potential of a GMM-based
feature.

Perspectives

I Enlarge the training basis.

I Use a GMM learnt on SAR images instead of the GMM learnt
by [Zoran and Weiss, 2011].

I Use a more sophisticated learning technique, eg: SVM,...

I Compare our results with state of the art methods.
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Thank you for your attention.

Any questions?

sonia.tabti@telecom-paristech.fr
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Histograms representing the probability of occurence of each Gaussian
Model for each label. Each histogram varies from one label to another
and this allows the GMM-based feature to discriminate the di�erent
labels.
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