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Abstract

In this article, a computationally efficient manifold
learning algorithm combining a variational autoen-
coder and a nearest neighbor graph is proposed. In
fact, using a variational autoencoder to compute an ap-
proximation of the underlying data distribution allows
our method to tackle some shortcomings of neighbor
graph construction methods, namely the ability to deal
with noisy and high dimensional data. This method
aims to extend the range of application of graph-based
manifold learning techniques to the complexity of in-
dustrial process data. Once a graph is computed, it
provides a condensed representation of the behavior of
the process. Also, the graph framework makes it more
convenient to incorporate industrial metrics, such as
product quality, through weights customization. The
final graph can be used to assist the operator in select-
ing optimal process parameters values. The proposed
approach is tested on both synthetic and real data.

Keywords: Manifold exploration, Neighbor Graph,
Variational AutoEncoder, Industry.

1 Introduction

Advances in the digitization of the manufacturing in-
dustry are resulting in a considerable increase in avail-
able data, both in terms of quantity and diversity of
sources all along the production cycle. And paradoxi-
cally, the high costs of data labelization, typically oc-
curring at the output of a process, lead to a relatively
small amount of labeled data. Uncovering the structure
of unlabeled data, expressed as the field of representa-
tion learning [BCV14], appears to be one of the the
next milestones in the application of machine learning
in the industry.

Representation learning is about transforming the
observable data, commonly expressed in the Euclidean
framework, into new representation that captures its
underlying structure better. Manifold learning follows
this principle with the assumption that the intrinsic
dimension of the data is potentially much lower than
the dimension of the ambient space, resulting in data
points lying around a manifold embedded in the real
space. Learning this manifold leads to more insight-
ful representations of the data that can potentially im-
prove the performances of subsequent machine learning
tasks, or allow data visualization.

Manifold learning techniques are numerous. Prin-
cipal Components Analysis (PCA) is a popular lin-
ear algorithm that scales very well to large volumes
of data. However, its nonlinear variant, Kernel PCA,
scales badly to large datasets. Since the early 2000s,
several algorithms dealing with nonlinearity have been
proposed. For instance, Isometric mapping (or Isomap,
which is the nonlinear extension of the Multidimen-
sional Scaling algorithm), Locally Linear Embedding
and Laplacian Eigenmaps can be cited. A survey on
these algorithms can be found in [Cay05]. They all
have in common to be based on the computation of
a nearest neighbor graph on which various techniques
are applied to find an optimal layout on a low dimen-
sional space. The neighborhood of a sample is either
defined by a number k of nearest neighbors or a radius
ε. These parameters generally require careful, costly
tuning when dealing with real world data. In fact,
nearest neighbors graphs do not behave as expected in
case of noisy data and high variations in the curvature
of the manifold and the sampling density of the data.
Other graph-based methods have been developed to
overcome these drawbacks. They focus on two aspects
of the graph construction. On the one hand, some
models attempt to focus on the graph architecture at
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global scale. For instance, ensemble of Minimum Span-
ning Trees (MST) [CPZ04] are computed from various
versions of the data perturbed with isotropic Gaus-
sian noise and combined together. Another architec-
ture is the Partition-based Graph Abstraction (PAGA)
[WHP+18] that connects groups of points at different
scales. On the other hand, some graph construction
models focus on a better evaluation of local connectiv-
ity. As an example, the Uniform Manifold Approxi-
mation and Projection (UMAP) algorithm [MHM20],
known for its application in data visualization, defines
a local Riemannian metric as a fuzzy estimation of
the connectivity between points. Another example is
adaptive manifold learning [ZWZ12] that dynamically
adapts the local neighborhood size k by taking into
account the interplay between the curvature and the
local density.

Deep learning also addressed the problem of mani-
fold learning. Instead of analyzing local connectivity
in the data, it directly learns the latent factors from
which the observable features derive. The architecture
of autoencoders neural networks is a well known
approach [Bal87], but many more elaborated models
have been developed since then [BCV14]. A promising
deep learning framework for manifold learning is the
one given by the Variational AutoEncoder (VAE). The
original version [KW14] can be seen as a regularized
version of the autoencoder which is able to learn
complex distributions and represent the data in a low
dimensional space, usually called latent space, that
tends to preserve the local structure of the data.

In this article, the proposed manifold learning algo-
rithm is applied to manifold exploration (or traversal).
It consists in exploiting the learned structure for op-
erations such as interpolation between any two points
of the data. One of the main interest of manifold ex-
ploration is the inference of meaningful intermediary
points with smooth transitions between each point of
the path. VAEs have already found concrete applica-
tions on real world data as a framework for manifold
exploration. In biology, they showed great efficiency in
learning the structure of molecules and discovering new
ones with interpolation in the latent space [SMAH20].

This work is motivated by an analogous applica-
tion in industry: the interpolation between distinct
setpoints of a physical process, while maintaining
its stability or any other operational criterion. The
proposed approach combine some advantages of the
two domains mentioned above: graphs are very
efficient for manifold exploration and the VAEs offer
a manifold learning framework that scales well to big

data. Instead of tweaking the nearest neighbor graph
in order to make it less sensitive to noise, the use of
VAEs as a preprocessing step for the input data is
explored. The VAE learns a smoothed version of the
data and a low dimensional latent space. Both can be
used to build a cleaner nearest neighbor graph.

After presenting the Variational AutoEncoder in sec-
tion 2, we introduce the mixed approach between clas-
sical graph based algorithms and VAE in section 3. In
section 4, we expose the benefits of manifold learning in
an industrial context, and present the results of exper-
iments conducted on actual data from three different
processes.

2 Learning statistical represen-
tation of non linear manifolds
with VAEs

In the field of machine learning, available data are
usually composed of N observed variables x =
(x1, x2, ..., xN ) ∈ RN without any prior knowledge on
the underlying process with true distribution p∗(x).
This distribution is approximated with a chosen model
pθ(x), with parameters θ. This fully-observed model
is then extended with L < N latent variables z =
(z1, z2, ..., zL) ∈ RL from which the observed data is
generated. The marginal distribution over the observed
variables pθ(x), is given by:

pθ(x) =

∫
pθ(x, z)dz (1)

VAEs rely on the variational inference technique for
learning the approximated distribution, which has
proven to be faster and easier to scale to large data
compared to the other dominant technique: Markov
Chain Monte Carlo (MCMC) sampling [BKM17]. Vari-
ational inference is an optimization strategy for ap-
proximating the intractable marginal likelihood in
equation (1). It introduces a family of distributions
qφ(z|x) such that:

qφ(z|x) ≈ pθ(z|x) (2)

The optimization objective is the minimization of the
Kullback-Leibler divergence between the two distribu-
tions in (2) : KL

(
qφ(z|x)||pθ(z|x)

)
, which is equiva-

lent to maximizing the Evidence Lower Bound (ELBO)
[KW14]:

ELBO = Eqφ(z|x)[log pθ(x|z)]−KL
(
qφ(z|x)||pθ(z)

)
(3)
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The most common choice for qφ(z|x) is a diagonal
Gaussian distribution, the parameters of which µz =
(µz1 , ..., µzL) and σz = (σz1 , ..., σzL) are the outputs of
an encoder network parametrized by φ:

(µz,σz) = Encoderφ(x)

qφ(z|x) = N
(
z;µz,σz

) (4)

When x is continuous, pθ(x|z) is also modeled by
a diagonal Gaussian distribution, whose parameters
µx = (µx1

, ..., µxN ) and σx = (σx1
, ..., σxN ) are the

outputs of a decoder network parametrized by θ:

(µx,σx) = Decoderθ(z)

pθ(x|z) = N
(
x;µx,σx

) (5)

And the prior pθ(z) is set to the standard normal
distribution N (0, 1).

Under these assumptions, the two terms of the
ELBO in equation (3) can be computed analytically.
The reconstruction term log pθ(x|z) is the likelihood
function of the Gaussian distribution N (x;µx,σx).

log pθ(x|z) =
N∑
n=1

(
− 1

2
log(2πσ2

xn)−
1

2σ2
xn

(xn − µxn)
2

)
(6)

And the regularization term is the KL divergence be-
tween two normal distribution N (µx,σx) and N (0, 1)

KL
(
q(z|x)||p(z)

)
=

L∑
l=1

−1

2

(
1 + log σ2

zl − σ
2
zl − µ

2
zl

)
(7)

One common simplification is to consider that the
output standard deviations

(
σxn
)
1≤n≤N are constant

[OKS20]. The reconstruction in equation (6) is then
comparable to a mean squared error between the input
and the reconstructed output, similarly to the autoen-
coder models. The model is focusing on learning the
manifold on which an averaged version of the data lies.
Passing an input through the model becomes equiva-
lent to projecting it onto the manifold.

3 Combining neighbor graph
and VAE

A neighbor graph is a directed graph that aims to cap-
ture the structure of the data by evaluating its local
connectivity. Each point is connected to its neighbors
according to a specified metric. Two common ways for
defining the neighborhood of a given point are: the k
nearest neighbors or the neighbors within a ball of ra-
dius ε. In both cases, the parameters k and ε represent

the size of the neighborhood and therefore control the
balance between the preservation of local vs. global
data structure. Neighbor graphs are a powerful tech-
nique for manifold exploration since, once the graph
is computed, operations such as shortest path search
are computationally cheap and interpretable. However,
they poorly scale up to real world data because of two
main limitations. Firstly, the choice of the parame-
ter k or ε is very sensitive to noise. Neighbor graphs
built on noisy data are likely to incorrectly connects
outliers. Secondly, the exact computation of a neigh-
bor graph has an exponential time complexity in the
dimension of the data. It has been exposed in section
2 that a variational autoencoder is able to extract a
smooth manifold from noisy data and to represent it
in a low dimensional latent space. The following sub-
sections details the method for exploiting these outputs
in order to improve the quality of the neighbor graph.

3.1 Neighbor graph on averaged data

The figure 1 illustrates the thresholding of the re-
construction error on synthetic data: the two moons
dataset. A VAE with one latent dimension is trained
in order to learn the data distribution. Figure 1b
shows the result of the training. The averaged data
learned by the model appears in red, and all the points
samples from the original data have been colored
according to their reconstruction error. The model
encodes successfully the curvy structure of the data
and is used to filter out points too far from their
reconstruction. This operation allows a more accurate
evaluation of the 5-nearest neighbor graph, as shown
in figures 1c and 1d, where the graph built directly on
the original data present faulty connections, defined
as edges that connect two points from distinct clusters.

3.2 Neighbor graph on latent space

The issue of the dimensionality of the input data can be
tackled by computing the neighbor graph on the latent
space formed by the latent variables z ∈ RL. Usually
L� N , which leads to a tremendous gain in computa-
tional time. The downside of this method compared to
the one described in section 3.1 is that, even if the la-
tent space preserves the overall structure of the data, it
doesn’t guarantee to preserve the distances [AHH18],
and in particular, shortest paths in the latent space
do not necessarily correspond to geodesics in the real
space. However, in an industrial context, finding the
geodesics is not a relevant problem. As discussed in
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Figure 1: From left to right: fig.1a shows the original two moons data colored by cluster. Fig.1b presents the
data colored by the reconstruction error when projecting a point on the manifold, showed in red, learned by a
VAE with one dimensional latent space. Fig.1c and 1d compare two different 5-nearest neighbor graphs. The
one on fig.1c is built on the original two moons data with σ2

Noise = 0.0225. The one in fig.1d is built on the
data filtered by the value the reconstruction loss. All points with a reconstruction error inferior to σ2

Noise have
been considered as outliers. Smoothing the data with this threshold, removes the outliers from the scope of the
graph computation, and thus reduces the likelihood of connecting the two clusters.

Section 4, business value comes from the customiza-
tion of the edge weights in order to incorporate any
type of industrial metrics, such as product quality, in
the path construction.

For any input point x ∈ RN , the VAE computes its
averaged version x̂ = V AE(x). And the quadratic er-
ror E(x) between x and x̂ informs about the likelihood
of x .

E(x) =

N∑
n=1

1

2

(
xn − x̂n

)2
L(x) ∝ − exp(E(x))

(8)

Thresholding the likelihood L is already a natural
approach to anomaly detection as explored with good
results in [XCZ+18] [SBLvdS16].
Also the likelihood can be used the other way, to
detect the most dense regions. That way outliers can
be removed and the algorithm is focusing on learning
the structure of the most representative part of the
data.

Let Re
x be the support of x with level e :

Re
x =

{
x ∈ RN , E(x) ≤ e

}
(9)

And a neighbor graph is computed on this support.
The parameter e controls the amount of residual noise
and can be easily tuned empirically. Note that, since
E(x) = 0 for x = x̂, the case e = 0 is valid and corre-
sponds to the special case of building the graph on the
averaged data.

The figure 2 presents the result of an experiment
conducted on a synthetic 3D parabolic distribution.

Isotropic Gaussian noise has been added to the data
with a standard deviation value set to 0.5. This rela-
tively high noise aims to emphasize the limitation of a
nearest neighbor graph on a shortest path search be-
tween two diametrically opposite samples. When com-
paring the three paths: the one computed on the latent
space, the one computed on the averaged manifold and
the one computed on the original noisy data, it first
appears that the graph built on noisy data fails to cap-
ture the structure of the parabola since the path crosses
the center of the parabola instead of following its cur-
vature. On the contrary, the paths computed on the
data preprocessed by the VAE are much more realis-
tic as they follow the most dense regions among the
historical samples. With the noticeable but expected
difference that the path computed on the latent space
doesn’t necessary follow a geodesic.

In summary, two new ways of evaluating a neighbor
graph, while avoiding the detrimental effect of noise,
are described. Each one having its benefit and its
downside. Building the graph on the averaged data, is
a better candidate for finding the geodesics but scales
poorly to very high dimensional data. While build-
ing the graph on the latent space is computationally
efficient but doesn’t guarantee to capture all the com-
plexity of the geometrical structure.

4 Application in industry

4.1 Exploring the manifold

Most of the business value offered by machine learning
in the industry is currently made with predictive mod-
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(a) True manifold (b) Random samples

(c) Learned manifold (d) 2D latent space

(e) Comparison of trajectories embedded in the real space.

(f) Comparison of distances between each point of the tra-
jectories and the nearest point from the true manifold.

Figure 2: Application of the two graph construction methods on a synthetic parabolic distribution. The true
manifold follows the equation z = 1

2 (x2 + y2)− 2. The figures 2a and 2b shows respectively the true manifold
and a noisy version, with isotropic Gaussian noise (σ = 0.5) that plays the role of the observable data. A
VAE reconstructs the manifold and learns a 2D latent space as shown in figures 2c and 2d. After building a
5-nearest neighbor graph on these two outputs in addition to a 5-nearest neighbor graph on the original noisy
data, a manifold traversal between two diametrically opposite samples has been experimented. The figures 2e
and 2f that the paths built on top of the VAE’s outputs are much more accurate in terms of respect of the true
curvature of the underlying manifold. It is an explicit illustration of the limited capacity of a neighbor graph
to correctly capture the structure of noisy data.

els that can replace expensive and time consuming
physical measures [WLS+19]. However, this paradigm
is limited by the small amount of labeled data, and
thus looses potentially valuable information held by the
unlabeled data recorded by sensors along a production
line. This article is motivated by the assumption that
the industry could also benefit from the shift currently
occurring in the artificial intelligence research: there is
a growing interest in algorithms that build insightful
representations of the data in an unsupervised manner.

After the theoretical considerations presented in the
sections 2 and 3, this section introduces an example
of business value brought by the approximation of the
true distribution of the process variables, learned from
unlabeled historical data. Learning the density func-
tion of the process leads to a better understanding of
its overall behavior, and reduces industrial risk when

changing the process parameters. Typical outcomes
to be avoided when shifting the process from one set-
point to another, are quality degradation and break-
downs. The approach presented in section 3 addressed
this issue. Experiments have been conducted on three
industrial Kaggle datasets: one issued from a roasting
machine [noab] and two provided by Bosch, taken from
different stations of a production line [noaa]. See table
1 for more details.

4.2 Influence of the graph construction
technique

The first experiment consists in comparing the different
graph computation methods on the three dataset. For
each dataset, a VAE is trained on the raw data and
three nearest neighbor graphs are computed:
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Dataset N M L
Roasting Machine 17 2M 4
Bosch Production
Line station L0S0

11 670K 6

Bosch Production
Line station L1S24

169 180K 16

Table 1: The three industrial datasets from Kaggle
used in experiments. N is the number of features, M
the number of samples. The value of L is the dimension
of the latent space and has been selected empirically.

• 10-nearest neighbor graph built on raw data,

• 10-nearest neighbor graph built on averaged data
computed by the VAE,

• 10-nearest neighbor graph built on latent space.

The choice of k = 10 showed empirically to be sat-
isfactory and has not been subject to extensive op-
timization. For the experiment, two nodes are ran-
domly selected, and the path between them is com-
puted with the Dijkstra algorithm [D+59], which con-
sists in finding the path that minimizes the sum of the
weights of the visited edges. In this first experiment
the weights are set to the Euclidean distances between
the two nodes of an edge. This process can be seen as
a geodesic estimation between the starting and ending
setpoints. Computing the geodesics doesn’t have a real
industrial application but illustrates the differences in
the way each graph captures the structure of the un-
derlying data. Figure 3 provides visual comparisons
between the three methods, for each of the datasets,
and shows that graph construction influences the ob-
tained paths. In conclusion, the choice of the graph
construction technique should be taken into account
while applying this method to real world problems.

4.3 Graph weights customization

The second experiment explores weights customiza-
tion. The roasting machine dataset provides 30K
labeled samples (over a total of 2M historical sam-
ples), namely samples for which the quality of the fi-
nal product has been measured and expressed with a
numerical variable. This quality variable is incorpo-
rated to the weights of the graph in order to avoid
regions with low quality. To make it relative, the raw
quality variable is replaced by the relative deviation
from a reference value. For any node i of the graph:

targeti = | qualityi−quality
ref
i

qualityrefi
|. Let j be a node con-

nected to i. The Euclidean distance between them is

noted di,j . The new weight of the edge connecting the-
ses nodes: wi,j is given by the following equation:

wi,j = di,j ×
(
targeti + targetj

2

)n
(10)

Where n ≥ 1 is a coefficient that controls the intensity
of the penalization. The experiment shows the result
for n = 1 and n = 2, referenced as linear and quadratic
weighting in the figure 4. It also shows that smoothing
the distribution of the target with a predictive model
(here a multi layer perceptron) regularizes the path. In
conclusion, with very few additional development it is
possible to compute paths that respect both the over-
all behavior of the process and any external industrial
constraints.

5 Conclusion and perspectives

This work introduces a framework that makes nearest
neighbor graphs suitable for the task of manifold ex-
ploration in the context of noisy and high dimensional
data distributions encountered in industry. A Varia-
tional AutoEncoder is used to learn the complex inter-
actions between the variables describing an industrial
process. It produces three valuable outputs that up-
grade the performance of the nearest neighbor graph:
a compressed representation of the data, called latent
space, that reduces the computational cost of com-
puting the nearest neighbor graph, an averaged ver-
sion of the data that drastically reduces the noise and
thus avoid faulty connections in the graph, and an es-
timation of the likelihood of any point, that can be
thresholded to control the amount of noise in the data.
When applied on industrial data, the resulting graph is
a great to tool for summarizing the global behavior of a
process and can be used to reduce risks inherent to the
control of the process parameters. Also, edge weights
can be customised according to a business metric in
order to avoid some regions of the space.
The experiments conducted during this study were a
successful proof of concept for the combination of deep
generative models and graphs and open the way to fu-
ture works. Here are some promising lines of research.
Exploiting the learned variance, considered as constant
in this study could be an interesting metric for dynam-
ically adapting the connectivity criterion in the graph.
Also, extending the approach to categorical variables
would expand the scope of industrial applications. Fi-
nally, more sophisticated weighting formulas can be ex-
perimented.
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Figure 3: Results of the experiments conducted on three industrial dataset taken from Kaggle. Principal
Component Analysis has been performed on resulting latent spaces to allow their visualizations. The first row
shows the trajectories followed by each path projected on the first two principal components of the latent space.
The paths can also be compared in terms of their likelihood computed by the VAE, as shown in the second row.

(a) Shortest path in a neighbor graph with custom
weights (b) Smoothed target

Figure 4: The graph framework makes the incorporation of business metrics into the search for a path between
two setpoints very convenient. Figure 4a shows an example of weight customization with a quality related
metric. This metric is preprocessed to build a target that is optimal at 0. This target is used to compute
weights that penalize lower quality regions (see section 3 for more details on the weights computation). The
dotted paths have been computed with a smoothed target, showed in 4b. The smoothed target is the output of
a multi layer perceptron.
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