
Aircraft Numerical “Twin”:
A Time Series Regression Competition

Adrien Pavão∗, Isabelle Guyon∗, Nachar Stéphane†, Fabrice Lebeau†, Martin Ghienne‡,
Ludovic Platon‡, Tristan Barbagelata‡, Pierre Escamilla‡, Sana Mzali‡, Meng Liao‡,

Sylvain Lassonde‡, Antonin Braun‡, Slim Ben Amor§, Liliana Cucu-Grosjean§, Marwan Wehaiba§,
Avner Bar-Hen§, Adriana Gogonel§, Alaeddine Ben Cheikh¶, Marc Duda¶, Julien Laugel¶,

Mathieu Marauri¶, Mhamed Souissi¶, Théo Lecerf�, Mehdi Elion�, Sonia Tabti�, Julien Budynek�,
Pauline Le Bouteiller�, Antonin Penon∗∗, Raphaël-David Lasseri∗∗, Julien Ripoche∗∗, Thomas Epalle∗∗
∗Université Paris-Saclay, †Dassault-Aviation, ‡Aquila/Supméca, §Statinf, ¶MFGLabs, �Fieldbox AI, ∗∗Magic LEMP

Abstract—This paper presents the design and analysis
of a data science competition on a problem of time
series regression from aeronautics data. For the purpose
of performing predictive maintenance, aviation companies
seek to create aircraft “numerical twins”, which are pro-
grams capable of accurately predicting strains at strategic
positions in various body parts of the aircraft. Given a
number of input parameters (sensor data) recorded in
sequence during the flight, the competition participants had
to predict output values (gauges), also recorded sequentially
during test flights, but not recorded during regular flights.
The competition data included hundreds of complete flights.
It was a code submission competition with complete blind
testing of algorithms. The results indicate that such a
problem can be effectively solved with gradient boosted
trees, after preprocessing and feature engineering. Deep
learning methods did not prove as efficient.

Index Terms—aeronautics, time series regression, ma-
chine learning, deep learning, gradient boosted trees

I. INTRODUCTION

The Paris Region AI Challenge 2020, organized by
the Ile-de-France region, Dassault Aviation, and Uni-
versité Paris-Saclay, was an industry contest between
10 startup companies, taking place from February 1 to
April 9, 2021. The teams had to tackle a multivariate
time-series regression task, involving aeronautics data
from test flights of Dassault Aviation aircraft. Given a
number of input parameters (sensor data) recorded in
sequence during the flight, the participants had to predict
output values (strain gauges), also recorded sequentially
on test aircraft, but not recorded on service aircraft.
In the application domain considered, collecting strain
gauge data on service aircraft is costly or infeasible. The
objective is to create a predictive model of the strain
gauges measurements from the data of test aircraft, to
obtain “virtual” strain gauges for service aircraft, hence
the concept of “Aircraft Numerical Twin”. The main
goals are to optimize scheduled maintenance and to
improve the design of future aircraft.

Besides delivering solutions to this problem, the chal-
lenge addressed questions of interest in machine learning:

1) Hand-crafted feature engineering. Is the design
and extraction of features a key factor of success?

2) Explainability. Do participants’ solutions provide
explainable decisions or interpretable models?

3) Asynchronous time series. Do the participants
come up with effective or original means of han-
dling different sampling rates and missing values?

4) Model design. Does the challenge reveal that one
type of machine learning model is superior to
another, for the task of the challenge?

5) Generic workflow. Does a high level modular
organization of solutions emerge?

6) Joint model and HP selection. Are models and
their hyper-parameters selected automatically?

7) Transfer/Meta learning. Are solutions provided
generic and applicable to new domains?

8) Hardware constraints. Are computa-
tional/memory limitations observed?

9) Diversity and creativity. Do participants’ solu-
tions include novel complementary ideas, offering
opportunities of synergistic combinations?

10) Intrinsic difficulty and modeling difficulty. Were
the tasks of the challenge of a difficulty adapted to
push the state-of-the-art in the domain considered?

This paper answers those questions, presents the sta-
tistical analysis of the best submission of each candidate,
and summarizes the highlights of winning solutions.

II. PROBLEM SETTING

Time series regression addresses the problem of pre-
dicting certain unavailable output time series from
other given input time series (Figure 1). Non sequential
meta-data may also be available. This task differs from
time series forecasting in two aspects: (1) past, present,
and future values from the input time series are available
to predict the output time series; (2) the prediction error

Fig. 1: Setting of Paris Region AI Challenge 2020: Time series
regression. Input variables are obtained from “sensors” and output
variables are obtained from “gauges”. A typical method is to regress a
window of inputs centered at time t to predict yt.

is computed globally for the entire output time series, no
on-line feedback is provided on past errors.

In our application domain, input time series (data
routinely recorded) and output time series (strain gauge
data recorded on test aircraft only) are multi-variate
time series, irregularly sampled or sampled at different
frequencies, but with given time stamps. We refer to this
problem as “asynchronous time series” regression. The
problem is cast into a supervised learning problem. For
training purposes, target data are recorded during test
flights (but absent during regular flights).

Formally, both input X = [xt,j], t = 0 · · · tmax, j =
1 · · ·nsensors and output Y = [yt,j], t = 0 · · · tmax, j =
1 · · ·ngauges are multivariate time series. The index t
indicates time and the index j the various sensors (called
sensors for the inputs and gauges for the outputs). At
training time, both X and Y are available. At test time,
only X is available and Y must be predicted. A typical
way to proceed is to learn to regress a window of input
data centered at time t to the output at time t.

In the native data format, a dataset D = {(ti, zi)j,k}
contains time series (ti, zi)j,k ∈ T , with j ∈
�1, ngauges + nsensors�, indicating a measured param-
eter, and k ∈ �1, nflights�, indicating a flight. Here ti
indicates a time stamp and zi a measurement.

Furthermore, the series can be divided into two groups,
T nsensors , and T ngauges , representing respectively the
inputs and the outputs. The goal is to predict missing
output values in the test time series, given the time
stamps (recall that time series are asynchronous).

III. CHALLENGE DESIGN

A. Protocol of evaluation and metric

Ten participants (startup companies, SME and aca-
demics) were pre-selected upon submitting an application
file. The challenge was organized with code submission
in two phases (feedback phase and final test phase)
on the Codalab platform. Both training and testing of
the models was done on the platform in both phases,
hence the participant had no direct access to the data,
except for some sample data (not part of the challenge)

provided with the starting kit, for illustrative purposes.
Pre-training off-platform was not allowed, except
for hyper-parameter adjustment. This was enforced by
checking the submission sizes and later the code itself.

The objective of the feedback phase was to let partic-
ipants develop their model. To that end, the participants
could make up to 100 submissions over the 2-month
duration of the feedback phase. Each submission was run
on the Codalab platform, using a dedicated compute
worker, with a generous execution time limit of five
days. One compute worker included 1 GPU NVIDIA
RTX 2080Ti, 4 vCPUs and 16 GB DDR4 RAM. The
dataset was stored on an SSD shared by all 10 compute
workers. The code submitted by the participants was
executed inside a docker container, with pre-installed
machine learning libraries including Tensorflow, Pytorch,
and scikit-learn. The code of the participants had no
internet access. The evaluation was carried out in two
steps, in two separate containers: (1) Training the pre-
dictive model and testing it on unlabeled test sequences;
(2) Scoring the predictions using the ground truth of
the labels. Hence, the code of the participants was
never exposed to the ground truth. Upon termination
of the execution of their code, the participants received
feedback on their performance on a leader board on the
Codalab platform. The participants had access to minimal
information via logs to debug their code; they could not
download the predictions made by their code.

The objective of the final test phase was to evaluate
the code submitted by each participant on fresh data, not
used to develop their solution. Only one final submission
per participant was allowed. The tests were also carried
out on the Codalab platform, using the same hardware
as in the feedback phase.

The predictions were evaluated using the Mean Abso-
lute Error (MAE), defined as: MAE = 1

nΣ
n
i=1|yi − ŷi|

where y is a ground truth output variable and ŷ a
prediction. Performances were averaged over all data
points in all test sequences and over all gauge outputs.

B. Data

The input time series included between 124 and 130
input parameters (a.k.a. features or sensor data), depend-
ing on the fights (some inputs were missing in some
flights). The output time series included between 62 and
67 output parameters (strain gauges) to be predicted.

During the feedback phase, the code of a participant
was trained on 117 complete flight records and tested on
4805 flight sequences from 186 flight rectords. During
the final test, it was trained on the same data, but tested
on 7398 other test flight sequences from the same flights
used for testing in the feedback phase.

Altogether, there were � 70GB of data. The volume
of data presented a major difficulty to the code of the

Fig. 2: Sample data: Four illustrative input time series.

participants. It was not possible to load all the data at
once in live memory (only 16 GB RAM available).

TABLE I: Dataset statistics. “#” means “number of”.

train flights # test flights # feedback sequences # final sequences
117 186 4805 7398

input # output mean variable length mean sequence length
124 - 130 62 - 67 856450 49

C. Starting kit

Since the participants’ code was blind tested on the
Codalab platform, the organizers provided them with a
well documented interface to prepare their submission. In
addition, they obtained a “starting kit”, including sample
code, sample data, and the evaluation code.

The code interface imposed that the participants would
use a Python object “wrapper”1 including two meth-
ods: fit(Dtrain) and predict(X). The evaluation
code enforced constraints imposed by the rules of the
challenge, such as the impossibility to train on test set
sequences. A so-called ingestion program was in charge
of receiving the submissions of the participants, calling
fit(Dtrain) to train the model, and then repeatedly
calling predict(X) on all test sequences, randomly
ordered. The ingestion program had no access to the
ground truth Y of the test sequences. The predictions
thus made were then scored by a scoring program, run
in a separate container, having access to the ground truth.
Both the ingestion program and the scoring program
were provided to the participants, so they could run them
on their local computers.

One additional difficulty of the challenge is that the
series are asynchronous and irregularly sampled. To
facilitate the task of the participants, the starting kit
included a data reader converting asynchronous data to
regularly sampled series. However, the participants were
expected to turn in predictions at given time stamps in the
output series, hence some interpolation needed to be done
as post-processing. Alternatively, the participants could

1The python object could call libraries not written in Python.

use the native format and address directly the problem
of asynchronous time series.

The starting kit included also sample of data, called
public data featuring 3 complete flights. Each flight
represented � 1 Gb of data.

IV. ALGORITHMS OF TIME SERIES REGRESSION

We briefly describe methods that were essential build-
ing blocks of the participants’ solutions.

A. Linear regression

In its simplest formulation, a linear model for time
series regression predicts the outputs at time t from the
inputs at time t:

ŷit =
�

j

wi,jx
j
t , (1)

or, in matrix-vector notation: ŷt = Wxt, where xt is a
vector of dimension nsensors, ŷt is a vector of dimen-
sion ngauges, and W is a weight matrix of dimension
ngauges × nsensors. A bias value can be included by
adding a constant input equal to 1. The model can be
trained using ordinary least squares [1].

A variant of this model uses as input a feature vector,
which may include, in addition to present values of xj

t ,
“lag” values xj

t−k and “lead” values xj
t+k. Such models

are non causal filters, since they use both the past and
future to predict the present. They perform a convo-
lution. Possibly, other more complex features may be
extracted from the input sequence xj

t , j = 1 · · ·nsensors,
t = 0 · · · tmax, e.g. products of original features.

Such linear models bear resemblance with ARIMAX
models [2] frequently used in time series forecasting.
However, ARIMAX models use past values of xj

k, and
past values of yik, k = 0 · · · t − 1, to predict ylt. In
contrast, the time series regression linear models do not
use past values of yik, but may use future values of
xj
k.

B. Ensemble of decision trees

Ensembles of decision trees are successful for clas-
sification and regression from feature-based data (aka
“tabular data”) [3]. Recently, they have also proven effi-
cient for time series regression [4], with adequate feature
engineering (e.g. including lag and lead features).

Ensemble methods combine the predictions of sev-
eral “weak learners” in order to produce more accurate
predictions [5]. Ensemble of decision trees use decision
trees as weak learners [6]. A decision tree recursively
partitions the input space along the axes (features).
During training, starting from a root node including all
the training examples, the data are split according to a
“decision rule” into two subsets, by setting a threshold
on one of the features, thus creating two new nodes. The
process is iterated until a halting condition is reached

or each node contains a single example. The terminal
nodes are called leaves. At test time, an example finds
its way through the tree by applying the decision rules
at each node of the tree. When a leaf is reached, the
predictions are made according to the average of training
example output values, in the case of regression, or the
most frequent label in the case of classification. The
choice of features and decision rules vary depending
on the algorithms. Typically, one minimizes the sample
heterogeneity within nodes.

Random Forests (RFs) [7] create ensembles of deci-
sion trees based on the principle of bagging (bootstrap
aggregating). Bagging consists in resampling the training
set (with replacement) to create many variants of the
training set, of the same size [5]. Thus some examples
will be drawn multiple times. One new weak learner
(here, decision tree) is then trained on each variant of
the training set. Predictions are made by averaging the
results of weak learners. As an additional refinement, the
RF algorithm also sub-samples the features when training
a weak learner, to handle large feature spaces.

Gradient Boosted Trees (GBT) [8] create sequential
ensembles of decision trees (as opposed to parallel
ensembles like RF). Briefly, let H be the set of the
weak learners (decision trees), and {hi}i∈�0,B� a subset
of H. The GBT predictor is a linear combination of weak
learners (γb ∈ R):

fB(x) =

B�

b=0

γbhb(x) (2)

Given partial sums (fb)b∈�0,B�, a loss function �(y, ŷ),
and training data {(xi, yi)}ni=1, fB is built sequentially:

f0(x) = argmin
γ∈R

n�

i=1

�(yi, γ) (constant model)

fb(x) = fb−1(x) + γbhb(x)

with γb = argmin
γ∈R

n�

i=1

�(yi, fb−1(xi) + γhb(xi))

(3)

and hb(x) is a weak learner fitting the pseudo-residuals
of fb−1, trained with {

�
xi, ∇fb−1

�(yi, fb−1(xi)
�
}ni=1.

C. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep
learning methods, successful notably in image recogni-
tion [9] and speech processing [10]. “Neurons” are linear
models, followed by an “activation function” performing
a “soft” decision. CNNs are several stacked layers of neu-
rons with local connections and shared weights, which
act as “convolution kernels” or feature extractors. CNNs
are usually trained with stochastic gradient descent [11].

Figure 3 shows a recent version of a CNN for time-
dependent inputs, called Time Convolutional Network
(TCN) [12], applicable to time series regression. TCNs

Fig. 3: Diagram of a basic TCN. Each circle represents a neuron and
edges represent time lags. A kernel is a neuron having local connections
and being repeated over the entire time series, to compute the next
layer. Inputs may be multivariate and each layer may include multiple
kernels. The outputs of “causal” TCNs receive only information from
“lag” (past) inputs, while those of “non causal” TCNs can also get
information from present and “lead” (future) inputs. Circled units
belong to the field of view of the circled output neuron.

Fig. 4: Diagram of a RNN. Each cell uses the previous output as a
new input. A cell is a differentiable module e.g. an LSTM cell [13].
Circled units belong to the field of view of the circled output neuron.
Compared to (non-causal) TCNs, RNNs do not see future inputs.

are 1D convolutional layers stacks, preserving series
length by zero-padding. TCNs for time series forecasting
use “causal convolutions” i.e. the output at time t receives
only past information. In contrast, TCNs for time series
regression allow the output to receive past and future
information. In basic CNN designs, the output gets a
large field of view only if the network is very deep or
the kernels very large. TCNs alleviate this problem with
“dilated convolutions”, “inflating” the kernel by inserting
holes between elements. One last refinement consists
in using “residual” connections, or “skip” connections,
which permits training deep nets without overfitting.

D. RNNs

Recurrent Neural Networks (RNNs) differ from feed-
forward neural networks by their use of feedback con-
nections. This is represented in Figure 4 by horizontal
connections between hidden units: a unit gets, at the
next time step, inputs from itself. RNNs have been used
for time series regression or classification problems with
long-term time dependencies [14]. However, in their
vanilla version, they do not incorporate lead features,
which could be important in time series regression.

RNNs are typically trained with stochastic gradient
descent [11], using “backpropagation through time”,

Fig. 5: Mean of MAE on all sequences and all output variables. Top:
feedback phase. Bottom: final phase. Standard deviations shown are:
Total STD = std computed on all scores (all pairs {output, sequence});
Output STD = average scores grouped by output variables; Sequence
STD = average scores grouped by flight sequences. As observed in
Figure 6, it seems that the tasks of the final phase were slightly easier.

which boils down to unfolding the network in time, up
to a certain depth. To enhance the long-term memory, an
RNN can be built from cells incorporating time delays
or feedback loops, e.g. Long Short-Term Memory cells
(LSTM) [13] and Gated Recurrent Units (GRU) [15].
Such architectures alleviate the problem of vanishing
gradients encountered when training traditional RNNs.
They can handle lags of unknown duration and are
relatively insensitive to gap length, an advantage over
other RNNs, hidden Markov models, and TCNs.

V. CHALLENGE RESULTS

A. Synopsis of the results

The results are presented in Table III, in order of
performance in the final phase, best comes first. The
participants tested three types of methods:

• Linear models inspired by ARIMAX models [2].
• Deep-learning feed-forward CNNs, regular MLPs,

and RNNs (typically LSTM).
• Gradient Boosted Tree (GBT) regressors (Cat-

Boost, XGBoost, LightGBM), incorporating the
time component via feature engineering.

Fig. 6: Comparison of the scores in feedback phase (phase 1) and
final phase (phase 2). Final phase scores are better, indicating that the
outputs were more predictable and that participants did not overfit.

Fig. 7: Generic workflow shared by most participating teams
(inspired by [16]).

We indicate in boldface in Table III the preferred
method of the participants. The top 6 teams all used GBT
methods in their final solution. If we assumed that teams
were selecting at random GBT vs. other methods, there
would be 1/26 = 1.5% chance to get all 6 first teams to
select GBT methods. Therefore this result is significant.

As it can be seen in Table III and Figure 5, the first
seven teams got a similar performance, impossible to
significantly distinguish. The final winner was selected
by a jury, taking into account scientific methodology and
future plans described by each team in a report. The
report highlights are presented in supplemental material.

Figure 6 compares the performances of the participants
in the feedback phase and the final phase. The data of
the final phase seems to have been slightly easier. There
is no sign of overfitting the feedback phase.

Table II answers the 10 challenge questions. Further
details are provided below.

B. Generic workflow

The participants all used a similar generic workflow,
as described in Figure 7. We briefly summarize the most
salient features of the solutions of the participants. More
details are provided in supplemental material.

TABLE II: Answers to the 10 challenge questions. Green checkmarks indicate positive answers, orange checkmarks partial
answers, and red crosses negative answer.

Question Answer Comment
Q1 Good hand-crafted features? ✔ Top ranking methods based on gradient boosted trees relied heavily on feature

engineering. Several participants used domain knowledge to engineer features.
Q2 Good explainability? ✔ Limited to feature selection and interpretation of human hand-crafted features.
Q3 Asynchronous time series dealt with? ✔ Limited to resampling to synchronize, then interpolating.
Q4 Conclusive results? ✔ All six top ranking participants used gradient boosted tree methods. Such methods

seem therefore best suited to time series regression, as confirmed in [4].
Q5 Generic workflow? ✔ A generic workflow similar to the starting kit was adopted by all participants.
Q6 HP selection ✔ Most participants performed random search or grid search, using cross-validation

ignoring sample time ordering or using hold-out strategies at the flight sequence
level. Only two participants performed Bayesian optimization.

Q7 Transfer learning or meta-learning? ✔ The solutions provided are fairly generic and should be applicable to new time-
series regression problem, except some aspects of feature engineering.

Q8 Hardware constraints observed? ✔ All solutions ran in less than 1 day (way below the time budget of 5 days). The
submission of only one participant crashed, possibly due to memory limitations.

Q9 Creativity? ✔ The participants contributed novel solutions that are complementary, with a variety
of types of features and models (e.g. based on gradient boosted trees or neural
networks). This offers opportunities for creating ensembles. Little “physics”or
knowledge about the task went into the model design.

Q10 Difficulty? ✘ The task difficulty was within reach of the participants, but the performances of
the participants were very close, thus the methods could not be well differentiated.

TABLE III: MAE performances in both phases. The order is given by final phase scores, best is first. The score differences between
participants being not statistically significant, the ranking is based upon digits of lesser significance, indicated as subscripts. We indicate also
the approaches used by each team and the duration of execution of their final entry, which is the duration of training and predictions, and is
therefore similar between the two phases. All runs are under 1 day of calculations, way under the time budget limitation of 5 days.

Team Score phase 1 Score phase 2 Main methods Duration (seconds) Duration (hours)
Previsions IO 0.01399 0.01269 CatBoost, multiple regression 83045 23.07

Amiral Technologies 0.01462 0.01274 XGBoost 70031 19.45
Aquila-Supméca 0.01519 0.01402 LightGBM, RF, Ridge, MLP 9551 2.65

Arion AI 0.01545 0.01406 XGBoost, regular regression 30243 8.40
MFG Labs 0.01662 0.01408 CatBoost, Tabnet (attention), TCN 58699 16.30

Magic LEMP 0.01678 0.01488 Cascade XGBoost, LSTM, CNN 64392 17.89
FieldBox.ai 0.01653 0.01616 MLP CNN 12335 3.43

MP Data 0.02236 0.01861 CNN, GNN, attention, LSTM 59312 16.47
Ose Engineering 0.02871 0.03019 CNN, LSTM 21250 5.90

Statinf 0.05243 0.03053 MLP, LSTM, RF 38119 10.59

The bulk of the work of the top ranking participants
went into data loading and feature engineering. The
data loader was critical since the entire training set
could not fit in RAM. Several approaches were taken
including: subsampling at a lower rate (the default was
10 Hz, typically it was reduced to 3 Hz); reducing
the resolution of coefficients (from 64bit floating point
to 32bit integers); or compressing data via a wavelet
transform.

Three types of features were considered: ad hoc fea-
tures incorporating human knowledge about the task,
generic combinations of original features, and signal
processing features (derivative, FFT, wavelets). Lag and
sometimes lead features were also considered, but did
not seem to be of much help, according to systematic
experiments conducted and reported by the participants.
All in all, it seems to be possible to treat this problem as
a regular regression problem, largely ignoring the time
component.

Concerning the regressor, as previously mentioned, the
most successful participants used gradient boosted trees
(GBT). Some participants compared linear classifiers,
GBT, and neural networks, and concluded in favor of

GBT. The fact that lag and lead features did not help
much may explain why this problem could be solved by
classical regressors such as GBT. Several implementa-
tions of GBT were tried and compared for speed and
accuracy, and seem to perform relatively similarly. See
Table IV for a summary of the main features of methods.
It is worth noticing that the teams using GBT spent
quite some effort on feature engineering while those
using neural networks relied on their model to learn the
features.

The time budget may have been a factor influencing
the choice of algorithm. Although the total time budget
per submission was 5 days, the duration of the feedback
phase was only 2 months. Some participants may have
preferred obtaining frequent feedback rather than letting
models run for several days. However, the participants
could train their models on their own computers to
perform model selection and in the end no submission
made on the platform exceeded one day. Hence, we do
not see computational time as a strong limiting factor.

TABLE IV: Summary of approaches taken. sr=sampling rate (default=10 Hz); strat = stratified sampling (by phase or maneuver);
uni = uniform sampling; interpol = interpolate bet. samples; md = replacement of missing data (md-const = repl. by a constant value; md-clust
= repl. by median of same cluster or nearest in cluster, md-fill = back-fill, front-fill, or nearest-fill; md-m = repl. by mean of that sensor); lag or
lead = use lag or lead features; tenc = target encoding; norm = feature normalization, standardization, or drift removal; clean = data cleaning; fc =
feature construction (fc-adhoc = ad hoc feature construction; fc-combi = multiply, add or square features; fc-fft = add frequency features; fc-der =
derivative computed; fc-ma = moving average; fc-trigo = apply trigonometric transforms; fc-stat = flight-level summary statistics; fc-clust: apply
clustering or unsupervised learning); fs = feature selection or reduction of the number of sensors; fn = feature number; recast = reduce numerical
resolution (e.g. 32 bits); clip = clipping or spike removal; val = use a validation set or cross-validation, eliminating time ordering of samples;
ho = hold-out: train on some flights, test on others; lb = leaderboard feedback; grid = grid-search; bo = Bayesian opt.; early = early stopping;
omo = one model per output; me = multiple experts; ens = ensembling; build multiple models with data fitting in memory, then average.

Team Data loading and sampling Preprocessing Feature engineering; feature selection HPO and Ensembling
Previsions IO strat md-const, lag+lead=520, tenc fc-ma=520, fc-adhoc=50, fc-stat=231 ho, early, omo, me=5

Amiral Technologies uni md-m, md-clust, norm, lag=2 fc-adhoc, fc-der, fs, fn=221 val, lb, early, omo
Aquila-Supméca uni, sr = 0.5 Hz md-fill (back-fill), clean, fc-clust fs (merged redundant sensors) boosting, stacking, me

Arion AI sr = 3 Hz clean, recast fs(110) val, bo, lb, omo, ens
MFG Labs sr = 10 Hz wavelets, md-fill, norm, lag, clip fs, fc-adhoc+combi+der+trigo+stat lb, me=9

Magic LEMP sr = 3 Hz md-clust fc-adhoc(200), fc-fft bo, omo, boosting
FieldBox.ai sr = 10 Hz clean, wavelets fc-combi, fc-trigo, fs NA

MP Data strat md-clust, md-fill NA NA
Ose Engineering interpol, sr = 10 Hz, strat md-fill+const, clip, clean, norm fs grid

Statinf interpol, sr = 10 Hz md-fill+const fs, fc-der, fc-ma, fn=159 grid, omo (for RF)

C. Statistical analyses

1) Significance of differences: We computed paired
differences between MAE values for all 471033 {output,
sequence} pairs in phase 2, for a pair of participants.
Namely, for a pair (i, j) of participants, and a given
{output, sequence} pair k, we calculated MAE(j, k)−
MAE(i, k), then averaged over k. In the results table, i
is the line index and j the column index. This quantity
should be positive, on average, if i ranks better than j in
the challenge. We then computed a quantity analogous
to a p-value, that is the fraction of such differences
that are negative. Small p-values shed doubt on the null
hypothesis that i and j have identical performances (the
alternative is that i is better than j). If we estimate that
generally what is considered “significant” corresponds to
a p-value less than 0.1, none of the differences observed
were found significant (not even between top ranking and
bottom ranking participants).

2) Relative differences: Finally we computed,
for a pair (i, j) of participants, the average
relative performance difference 2(MAE(j, k) −
MAE(i, k))/(MAE(j, k) + MAE(i, k)), averaged
over {output, sequence} pair k. We show the result
table in (Figure 8), where i is the line index and j the
column index.

We distinguish three clusters and a singleton (Ose
Engineering). We notice a pair of very similar methods
Previsions IO and Amiral Technologies performing best
and a nearby a cluster of 4 other gradient boosted trees.
We have another cluster of 3 neural networks performing
worse than all gradient boosted trees, and in last position,
Ose Engineering.

Fig. 8: Relative differences in MAE over all 471033 {output,
sequence} pairs in phase 2 (in percent). Positive values mean that
method i is better than method j on average (i is the line index and
j the column index). Lines and columns have been grouped according
to a hierarchical clustering algorithm.

VI. POST CHALLENGE ANALYSES

A. Alternative metrics

The MAE metric used for the challenge was compared
with two other metrics: R2 and the Pearson correlation
coefficient. While the ranking of participants according
to MAE and R2 was similar, we observed noticeable
differences between MAE and Pearson correlation co-
efficient, as illustrated in Figure 9. In particular, the

Fig. 9: MAE vs (1 - Pearson’s ρ).

last team in the final leaderboard have the second best
Pearson’s correlation. The Pearson correlation factors out
one specific prediction difficulty of the challenge: the
time series offsets between flight sequences. This may
be due to the fact that the aircraft is heavier when fully
loaded with fuel.

B. Ensembling

We investigated whether the methods proposed were
complementary or not, encouraged by the correlation
matrix (see supplemental material). We created voting
ensembles of the top 5 participants and all participants,
using either the median or the mean of the predictions
made. The best attempt, yielding a final test set MAE
performance of 0.01224, is obtained when taking the
median of all methods’ predictions. It is slightly better
that the MAE of the best participant 0.01269, but not
significantly.

C. Code open-sourcing

We are fortunate enough that the code of two teams
(Aquila-Supméca and Statinf) were open-sourced2. Since
the data of the challenge remain confidential, we evalu-
ated their code on a standard benchmark from the “Time
Series Extrinsic Regression Archive” [17] (TSER). The
results are presented in supplemental material. Without
tuning any hyper-parameter on the TSER benchmark,
the solutions of the challenge participants fare well,
compared with the best performing algorithm of the
TSER benchmark [18] and a popular AutoML package
(AutoGluon [19]).

VII. CONCLUSION

The results of the challenge indicate that it is possible
to model virtual strain gauges, using as input sensor data
from an aircraft. Such model could helps us improve
aircraft maintenance and future design. Techniques based

2TeamAquila-Supméca: https://tinyurl.com/wetz7sst; TeamStatinf:
https://github.com/Anonymous-teams/Challenge-TeamJ.

on feature engineering and gradient boosted trees per-
formed significantly better than both “classical” linear
methods and deep learning methods. The performances
of the participants ended up very close to one another by
the end of the challenge. The various statistical analyses
show that the average relative performance difference
separates two teams (Previsions IO and Amiral Tech-
nologies) from the rest. But, the difference between the
two first ranking participants is not significant according
to any metric, and the rank can even be swapped depend-
ing on the metric. Two teams open-sourced their code,
making available a range of solutions based on gradient
boosted trees and deep-learning. Tested on a standard
time-series regression benchmark, these solutions fare
well, without any hyper-parameter tuning.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd
Edition, ser. Springer Series in Statistics, 2009.

[2] R. J. Hyndman and G. Athanasopoulos, Eds., Forecasting: prin-
ciples and practice. OTexts, 2021.

[3] V. Harasymiv, “Lessons from 2 million machine learning models
on kaggle,” KDnuggets, 2015.

[4] Z. Xu, W. Tu, and I. Guyon, “Automl meets time series regression
design and analysis of the autoseries challenge,” CoRR, vol.
abs/2107.13186, 2021.

[5] T. G. Dietterich, “Ensemble methods in machine learning,” in
Multiple Classifier Systems, LBCS-1857. Springer, 2000.

[6] J. R. Quinlan, “Induction of decision trees,” MACH. LEARN,
vol. 1, pp. 81–106, 1986.

[7] A. Liaw and M. Wiener, “Classification and regression by ran-
domforest,” R News, vol. 2, no. 3, pp. 18–22, 2002.

[8] J. H. Friedman, “Stochastic gradient boosting,” Computational
Statistics & Data Analysis, vol. 38, no. 4, pp. 367 – 378, 2002,
nonlinear Methods and Data Mining.

[9] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopa-
padakis, “Deep learning for computer vision: A brief review,”
Computational intelligence and neuroscience, vol. 2018, 2018.

[10] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications:
An overview,” in IEEE international conference on acoustics,
speech and signal processing, 2013, pp. 8599–8603.

[11] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” arXiv preprint arXiv:1609.04747, 2016.

[12] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling,” CoRR, vol. abs/1803.01271, 2018.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, pp. 1735–80, 12 1997.

[14] Z. C. Lipton, “A critical review of recurrent neural networks for
sequence learning,” CoRR, vol. abs/1506.00019, 2015.

[15] K. Cho et al., “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” CoRR, vol.
abs/1406.1078, 2014.

[16] Z. Liu et al., “Winning solutions and post-challenge analyses of
the ChaLearn AutoDL challenge 2019,” TPAMI, in Press, 2021.

[17] C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb, “Monash
university, uea, UCR time series regression archive,” CoRR, vol.
abs/2006.10996, 2020.

[18] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: excep-
tionally fast and accurate time series classification using random
convolutional kernels,” Data Min. Knowl. Discov., vol. 34, 2020.

[19] N. Erickson et al., “Autogluon-tabular: Robust and accurate
automl for structured data,” 2020.

[20] C. W. Tan, C. Bergmeir, F. Petitjean, and G. I. Webb, “Time series
extrinsic regression,” 2020.

