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That famous number you might all know about
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→ 80 % of AI projects fail
→ It’s twice higher than other IT projects

Source: The Root Causes of Failure for Artificial Intelligence 
Projects and How They Can Succeed, J. Ryseff et al. (RAND), 2024

https://www.rand.org/pubs/research_reports/RRA2680-1.html
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→ 80 % of AI projects fail
→ It’s twice higher than other IT projects

Source: The Root Causes of Failure for Artificial Intelligence 
Projects and How They Can Succeed, J. Ryseff et al. (RAND), 2024

Why is that ? The main bottlenecks
● Data collection
● Data labeling  ← Todays focus !
● Deployment

https://www.rand.org/pubs/research_reports/RRA2680-1.html
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Outline

1. One of the main bottlenecks of AI projects
a. Simplified AI project lifecycle
b. Why is labeling so hard ?

2. Different ways to reduce the pain of image labeling
a. Use a good interface
b. Build a strong review methodology
c. Some modeling strategies to ease the pain

3. Focus on Vision-Language Models to accelerate image labeling
a. From open world models to VLMs
b. Proposed semi-automated labeling workflow
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Why is labeling so hard ?
● Not well understood, not anticipated 
● Expansive
● Time consuming

● Limited data volume / the patterns we need to observe are rare

● Requires expertise
○ Good methodology
○ SMEs (Subject Matter Experts) must do the labeling in many cases

● Not easy to outsource
○ But if you do, write down very clear specifications

● Requires to use the right tools
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Tip 1: Use a good labeling interface
For more:

● Efficient and collaborative work
● Ergonomy
● And many other features …

Here are my two favorite open source tools to easily build labeling 
interfaces:
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Tip 2: Build a strong labeling review methodology
● Annotation → visual review
● Compute stats of the labels’ distribution regularly
● Give feedbacks to the labeling team regularly
● Visualize the embeddings of the images (or bounding boxes) in 2D to 

spot obvious labeling mistakes
○ How?: You can do it yourself but I recommend to use this open-source tool:
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● Collect metadata to label the images
○ Eg: for defect detection, if reports listing the defects exist, use them

● And of course, use pretrained models - if relevant
○ Even better, check if an open-source model already exists and works for your 

use case

● Use data augmentation - if relevant

● If you can, test image synthesis - depends on the use case
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Tip 3.1: modeling strategies that can help you



Licence: CC-BY-NC-SA

Tip 3.2: modeling strategies that can help you
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→ Improve model’s 
performance iteratively as you 
label more data

→ Label in priority samples with 
higher uncertainty scores

They can be very helpful for:

● Object detection
● Segmentation
● VQA (Visual Question Answering)
● OCR (Optical Character Recognition)
● Image captioning, …

→ You can fine tune them

→ But mostly you can use them to 
semi-automate data labeling and train an 
efficient model with this data to be deployed

We will talk more about them in 
the next slides …

Weakly supervised 
learning Active learning Models combining 

text and images

→ Use less labeled data

● Unsupervised learning
○ Eg: anomaly detection

● Few shots learning
● Semi-supervised learning 

(SSL)
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Outline

1. One of the main bottlenecks of AI projects
a. Simplified AI project lifecycle
b. Why is labeling so hard ?

2. Different ways to reduce the pain of image labeling
a. Use a good interface
b. Build a strong review methodology
c. Some modeling strategies to ease the pain

3. Focus on Vision-Language Models to accelerate image 
labeling
a. From open world models to VLMs
b. Proposed semi-automated labeling workflow
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From a foundation model to open world models 💚

11

SAM Per-SAM
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Image + promptImage + click or bounding-box
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Mask of the selected object Mask for similar objects when 
applied on other images

Masks and bbox’s of the objects prompted 

Models’ 
labeling 
power

Reference mage + mask
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If the object exists in the model’s 

vocabulary, you win ! 🎉
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labeling tools 🔥
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From open world models to Vision Language Models
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Too many open-source options to 
cite them all:

- Open world models (open-set 
models)

- Zero-shot models
- Large Multimodal Models 
- …

They are all great candidates to help 
semi-automate image labeling !
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Proposed semi-automated image labeling and model training workflow
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1- Data 
collection

2- SALM 
selection

3- SALM 
inference

4- Labeling 
interface 

5- Labels’ 
review 6- Modeling

SALM = Semi-Automated Labeling Model, eg: Grounding DINO, Grounded-SAM, PaliGemma, Molmo …

- Test different SALMs
- Test many prompts
- On many samples

Scenario 1:
- DIY inference
- Import images and metadata in 

the labeling interface
Scenario 2:

- Import images
- Inference using the labeling 

interface’s backend
→ Depending on the SALM and the 
use case

- Visual inspection of the 
SALM results

- Use FiftyOne
- Bbox or mask adjustment
- Category adjustment
- Adding missed objects

Build a specialized model
- Use a relevant architecture
- … that satisfies production 

constraints
- Apply transfer learning or 

fine tuning 
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Takeaways

To make image labeling more efficient:

● Check if you have metadata that can help
● Use a labeling interface and review the labels
● Select your modeling strategy wisely
● Take advantage of open-set models and VLMs to semi-automate 

the process and use this data to train a specialized model
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Words by one of my clients                   in the retail industry: 

“ ~38% of time was saved compared to a manual labeling process” 
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Thank you for your attention !
Any questions ?

Follow me on 
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